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LARGE DYNAMIC DEFORMATIONS CAUSED BY A FORCE
TRAVELING ON AN EXTENSIBLE STRING

ALBERT B. SCHULTZ

Department of Materials Engineering,
University of Illinois at Chicago Circle, Chicago, Illinois

Abstract-An infinitely long, perfectly flexible string is subjected to two concentrated forces which travel along
the string with constant speed in opposite directions from a common starting point. The ensuing motions and
deformations of the string are described. The description takes into account large deformations, changes in string
tension, and the transverse and longitudinal waves which propagate.

1. INTRODUCfION

A TECHNIQUE commonly used to study dynamic loading of structural elements is to give
one surface of the element an initial, uniformly distributed, impulsive velocity and find the
subsequent response. This type ofloading is often produced in the laboratory (Humphreys
[1] ; Florence and Firth [2], for example) by ignition of a layer of sheet explosive placed on
the element. Because the burning of the explosive progresses from the ignition point at a
finite rate, the question arises as to what extent this procedure simulates a uniform distri­
bution of impulsive velocity. Some answers may be obtained by consideration of the
response of a very simple structure-an infinitely long perfectly flexible string-to two
traveling concentrated forces which represent the two detonation fronts progressing in
opposite directions from the point of ignition. This may then be compared with the res­
ponse of the string to a truly uniform initial velocity distribution.

Kanninen and Florence [3] solved the problem of an infinitely long perfect string sub­
jected to two concentrated transverse forces which travel along the string at constant speed
in opposite directions from a common starting point. They considered the deformation
of the string to be small with the string tension a constant. A solution to the same problem
is given here which allows for large deformations, changes in string tension, and the propa­
gation of longitudinal waves in the string.

It will be shown that the solution to the problem may be obtained by combining the
kinematic and dynamic requirements on the transverse wave which occurs under the action
of a traveling force with the solution to the field equations governing wave propagation
in the string under no external forces. The solution to this latter problem was presented in
connection with a study of nonlinear wave propagation in strings [4], but will be presented
here using an approach somewhat different from that used in [4].

2. RESPONSE OF THE STRING UNDER NO EXTERNAL FORCES

Let X be the position of a particle of the string in the undeformed state, t the time, x
and y horizontal and vertical particle displacements, (J the nominal (engineering) stress, P
the mass density in the undeformed state, A. the ratio of the current length of a segment to
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its undeformed length, and t/! the angle the tangent to a segment makes with the initial
longitudinal axis. The equations of motion are

a2y a .
Pail = ax(O" sm t/!)

a2x a
Pail = ax (0" cos t/!).

From the kinematics of deformation,

ax
- = Acos·I'-1ax 'I'

ay ,.
ax = Asmt/!.

(I)

(2)

(3)

(4)

Transformation of these expressions into ones involving u and v, particle velocities respec­
tively along and transverse to a wire segment, leads to

au _vat/!_~ dO" aA = 0
at at P dA ax

av+uat/! 0" at/! = 0
at at pax

~_vat/! aA=o
ax ax at

~+uat/! _Aat/! = o.
ax ax at

(5)

(6)

(7)

(8)

In writing equation (5), it has been assumed that the behavior of the material of th~ string
is governed by a constitutive equation of form

in which

dO"
dA > 0

0" = 0"(,1,) (9a)

(9b)

The second requirement in equation (9b) may be removed if the longitudinal shock waves
which would result when it is violated are accounted for. This is commonly done whenever
(9a) incorporates a linear elastic region. Both nonlinear elastic and plastic deformation may
be taken into account in (9a).

A similarity solution of these equations may be constructed. Assume that each of the
four dependent variables appearing in equations (5}-(8) are functions only of

X
11 = t
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so that the two partial differentiation operations may be expressed as

old
oX t d"

Symbolizing differentiation with respect to tf by a prime, the equations become

u' -vljl' +tfA' = 0

tfu' - "vljl' +e2 A.' = 0

v' +(U+"A)ljI' = 0

tfV' + (tfU +AC2W = 0

(10)

(11)

(12)

(13)

where

2 1 dlT
e =--

pdA
-2 ITe =-

pA
(14)

(17)

Substituting equations (10) and (12), obtain in place of equations (11) and (13)

(,,2 -e2);.' = 0 (15)

(,,2_ C2)ljI' = O. (16)

Equations (10), (12), (15) and (16) may be interpreted as follows. The exceptional case,
e = C, will be omitted.

(a) If tf i= ±C, ljI and v are constant.
(b) If" i= ±e, A. is constant, and unless tf ±c, U is also constant.
(c) When 11 = ±e, Aand U may be discontinuous and furthermore,

U = :+ f edA.

(d) When tf = ±c, ljI, v, and Umay all be discontinuous, and furthermore

dv
- = -(U+AC)
dljl -

(18)

du
dljl = v. (19)

A second differentiation ofequation (19) and substitution ofequation (18) in the result leads
to the requirements

U = Psinljl+Qcosljl:+A.C

v = P cos ljI - Qsin ljI

(20)

(21)

(22a)

(22b)v = const.

where P and Q are arbitrary constants.
In other words, longitudinal waves progress along lines X = ±et and they are char­

acterized by equation (17) and the conditions

ljI = const.
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Transverse waves progress along lines X = ±et, and are characterized by equations (20)
and (21), and the condition

..1. = const.

3. EFFECTS OF A TRAVEUNG FORCE

(23)

Consider the force per unit undeformed cross-sectional area of the wire aT, traveling
at speed V along the string. Let subscripts B and A refer to conditions before and after
the force passes along a segment of the string and denote the undeformed cross-sectional
area by a. Then, in time At, material in amount paV At, under the influence of stresses
aA' aB' and aT changes its velocity components from UB,VB to UA' VA; its orientation by
angle !/JAB' and its stretch ratio from ..1.B to ..1.A, as shown in Fig. 1.

CTr

FIG. I

Consideration of particle and wavefront displacements occurring in At leads to

UB = (uA+..1.AV)cos!/JAB-vAsin!/JAB-..1.BV

VB = (UA+..1.AV) sin !/JAB+VA cos !/JAB'

(24)

(25)

These equations could have been obtained by application of equations (20) and (21) first
to one and then to the other side of the wavefront, since they are purely kinematic relations,
unaffected by the presence of the transverse force.

Linear impulse-momentum considerations lead to

(aA- aB cos !/JAB) +aT sin !/JAB = PV(UA - UB cos !/JAB - VB sin !/JAB) (26)

aB sin !/JAB+aTcos !/JAB = pV(VA-VBCOS !/JAB+UB sin !/JAB) (27)

Although these two equations are written specifically for the case that the traveling force is
transverse to string segments immediately in front of it, they can be easily modified to
account for a traveling force oriented arbitrarily in the plane of motion ofthe string.

4. CONSTRUCfION OF SOLUTIONS

The solution to the overall problem will depend on the relative magnitudes ofthe propa­
gation speeds of the various waves which occur in the string. The propagation speed of the
transverse wave accompanying each traveling force is prescribed by the burning rate of the
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explosive. It will be seen that a second transverse wave will also propagate in each direction
from the point of ignition under the influence of no external forces. Its propagation speed
is determined by the level of strain in the vicinity of the wavefront, as given by the second
of equations (14). It may propagate either ahead of or behind the traveling force. One or
more longitudinal shock waves may propagate, or a whole series of small longitudinal
(plastic) wavelets may propagate, or a combination of these two. Longitudinal wave speeds
are determined by the constitutive equation for the string material, as given by the first
of equations (14).

In some cases the longitudinal wave is a wave of unloading, and this must be considered
in the description of the stress-strain relation. For the more common engineering materials
an increase in stress is propagated as a series of wavelets, and a decrease propagates in a
shock wave. Longitudinal waves may propagate ahead of, behind, or mixed in with any
of the transverse waves.

No matter what the ordering of the wave speeds, the initial conditions will be taken
to be

U = v = IjJ = 0 A = AD for" = oo(t = 0)

and symmetry requirements dictate the boundary conditions

U = IjJ 0 for" = 0 (X = 0).

The point X = 0 is chosen to be the ignition point, and because of symmetry, it suffices
to consider only waves progressing in the positive X direction.

Two examples of how the solution is constructed for a given ordering of wave speeds
will be given below, and from these it can be seen how the solution would be constructed
for any other ordering of wave speeds. In every case, conditions on the two sides of the
transverse wave front accompanying the traveling wave must satisfy equations (20), (21),
(26) and (27). The second transverse wave front is subject to equations (20), (21) and (23),
and any longitudinal wavefront is subject to equations (17) and (22).

Commercially pure, annealed aluminum possesses an elastic longitudinal wave speed
of approximately 2 x 105 in/sec. At a strain of 0'01, the plastic longitudinal and the trans­
verse wave speeds are approximately 3 x 104 in/sec and 5 x 103 in/sec respectively. Kan­
ninen and Florence [3] report detonation speeds in the range (1'2-2'8) x 105 in/sec. The two
examples have been chosen accordingly.

Example I: V > all c > C
The characteristics diagram appropriate to this situation is shown in Fig. 2(a) and the

corresponding string configuration in Fig. 2(b). The characteristics are the lines" = con­
stant, and only those corresponding to non-constant states are indicated. In constructing
Fig. 2(a), the constancy of v and IjJ across the longitudinal wavelets, the constancy of A
across the second transverse wave, and the initial and boundary conditions have been
taken into account. The subscripts refer to the various constant states denoted by circled
numbers. The problem reduces to finding u1,v1,1jJ1,A1,u2,A2 and V3 for given AD, aT, V
and a(I1,). c and cdepend only on strain level for a given u(l1,) through equations (14).

Evaluating P and Q in equations (20) and (21) from state 0, and using them for state 1
leads to

U1 = 11,0V cos 1jJ1 -11,1 V

Vt = AoV sin IjJt.

(28)

(29)
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FIG. 2(b)

FIG. 3(b)

Evaluating equations (26) and (27) for states 0 and 1 leads to

(0" 1 - 0"0 COS'" 1) +O"T sin'"1 = PVUl

0"0 sin'" 1 +0"T cos'" 1 = PVVI'

Equation (17) relates states 1 and 2 by

f
'h

Uz = Ul - c dA
A,

and equations (20) and (21) evaluated for states 2 and 3 yield

U2 = V3 sin "'1 +A2C2(COS "'1 -1)

VI = V 3 cos'" 1 - A.ZC2 sin'" l'

(30)

(31)

(32)

(33)

(34)

The above seven equations provide sufficient information for the solution to the problem.
The required information may be put into more explicit form. Substituting equations (28)
and (29) into (30) and (31) and solving for the unknown terms O"(A.d, AI' and'" 1, obtain

where the notation has been used

O"T
tan "'1 = -­

So

si = s~ +O"}

(35)

(36)

i = 0, 1.
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With these results, equations (28) and (20) become

StUI = V(so,1.O-St,1.t) (37)

SIVt = ,1.ol1TV (38)

permitting equations (33) and (34) to be rearranged to

(St-So),1.2C2-S0UI2 = V(sl,1.o-so,1.d (39)

SOV3 = l1TO.O V - ,1.2(2) (40)

where

,1.2 is the only intrinsic unknown in the left hand side of equation (39).
As Kanninen and Florence explain, if every element of the string were to receive the

velocity impulse simultaneously, neither longitudinal nor transverse waves would propa­
gate, the tension would remain at its initial value, and the impulsive velocity achieved would
be

l1T

pV

Let R be the ratio of the final velocity achieved, V3' to the above ideal value. Then, with the
use of equation (40),

1-A2C2/AOV
1+(CO/V)2 .

If l1T is small enough so that A2 is not very different from AO' this reduces to the value
Kanninen and Florence found, provided that

Co
R == 1--.

V

Illustrative sets ofresults are presented in Figs. 4 and 5 for this case. In Fig. 4, the stress­
strain relation is taken to be an ideal bilinear hysteretic one with initial slope of 107 psi,
secondary slope of 2·5 x 104 psi, and a yield stress of 5 x 104 psi. Other relevant data are

p = 2·5 x 1O- 4 Ib-sec2/in4

80=(A,0 1)=5xlO- 3

V = 2·25 or 2·50 x 105 in/sec.

These results show that the longitudinal wave is a wave of unloading (that is, A2 < AI)'
In Fig. 5, the stress-strain relation is taken to be linear elastic, with

E = 107 psi

p = 2·5 x 1O- 4 1b·sec2/in4

80 = 0

V = 2·25 or 2·50 x 105 in/sec.

Here, the longitudinal wave is a loading wave.
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In both of the above illustrations, the longitudinal wave is a shock wave because the
stress-strain relation is a straight line between AI and A2'

Example II : all c > V > C
The characteristics diagram and string configuration are shown in Figs. 3(a) and 3(b),

where again the initial and boundary conditions and the more simple requirements on
changes in variables across wavefronts have already been accounted for. The problem then
is to find UI, Al , U2' r/!2' V2' A2' and V3 for given AD, aT, Vand a(A).
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The seven equations needed for the solution are as follows. Equation (17) relates states
oand 1 by

f
),1

U1 = - cdl.
),0

States 1 and 2 are related by equations (20), (21), (26) and (27), which yield

U2 = (U1 +AtV)cosl/12-A2V

V2 = -(U1 + ,1.1 V) sin 1/12

(12 -(11 cos 1/12 +(1r sin 1/12 = PV(u 2-U1 cos 1/12)

(11 sin 1/12 +(1r cos 1/12 = PV(V2 +U1 sin 1/12)

Finally, states 2 and 3 are related by equations (20) and (21), which yield

U2 = V3 sin 1/12 + A2C2(cos 1/12-1)

V2 = V3 cos 1/12 -/hC2 sin 1/12

This solution may be expressed more conveniently as follows. With the notation

(41)

(42)

(43)

(44)

(45)

(46)

(47)

s; = (1;+ PA;V2

equations (42H45) may be rearranged to

i = 1,2

tan 1/12 = -(1r/S1

S2(U2 +A2 V) = S1(U1 +A1 V)

S2V2 = (Ut +,1.1 V)(1r.

Using these results, equations (46) and (47) may be combined to obtain

S1V3 = (1r(Ut+ A1V - A2C2)'

(48)

(49)

(50)

(51)

(52)

Equations (48), (51) and (52) may be combined to

(u1+A1V)s2 = A2[StV+c2(s2-s1)] (53)

with the result that equations (41), (48) and (53) must be simultaneously solved for the three
implicit unknowns; A1' U1 and A2' Then 1/12' U2' V2 and V3 may be found from equations
(49), (50), (51) and (52).

In this case, the ratio of the final velocity achieved to its ideal value, which may be
obtained by combining equations (52) and (53), is

Figure 6 presents illustrative results for the case V < c. The data for Fig. 5 are used here
also, except

V = 1·0 or 1·5 x lOs in/sec.
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Again, the second longitudinal wave is a loading wave, and because of the linear relationship
between stress and strain, it is a shock wave.

5. DISCUSSION

Despite the fact that the solution to the title problem has been found in closed form,
it would require extensive calculation to determine completely how changing the input
parameters (aT, V, ,1,0' 0'(,1,» affects the response of the string. In particular, the constitutive
equation determines the various wave speeds, and the ordering of these determines which
set of equations apply.

The responses illustrated in Figs. 4, 5 and 6 were selected to give at least some insight
into the effects of string extensibility. In the case of Fig. 4, extensibility leads to velocity
simulation closer to the ideal (R = 1) than would occur in an inextensible string. However,
the final velocity may be achieved much more slowly than that analysis indicates, since
C2 becomes considerably smaller than Co for large aT' In addition, the inextensible model
does not predict the large strains (as much as 0'40 for these input parameter ranges) which
occur.

The contrast between the responses illustrated in Figs. 5 and 6 is marked. In both these
cases, Co = 0, and the inextensible model would indicate V is highly supersonic and there­
fore, simulation excellent. Relative to the longitudinal wave speed, V is supersonic in Fig. 5
and subsonic in Fig. 6. In the former case simulation is very good, but the latter case shows
simulation to be poor, with the string stressed to levels that would cause most materials to
fail. Therefore, there are at least some circumstances in which the use of small-deformation
theory is inadequate to describe the response.
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AOcTpaKT-HccneJ\yeTcll 6ecKoHe'lHo AnHHHbIH, HJ\eanbHO rH6KHH CTeplKeHb, nOJ\BeplKeHHblH Harpy3Ke
llByMlI COCpelloTO'leHHbIMH CHnaMH, KOTopbIe nepellBHralOTclI C nocTollHHolt CKOpOCTblO BJ\onb CTeplKHlI,
B npOTHnonOlKeHHbIX HanpaBneHHlIX, HCXOJ\lIWHX H3 OJ\HOlt TO'lKH. OnHCbIBaIOTClI C03J\aBwHecll J\BHlKeHHlI
H J\et!lopMauHH CTeplKHlI. Pac'leT HpHHHMaeT DO BHHMaHHe 60nbWHe J\et!lopMaI.\HH, H3MeHeHHlI B paCTlIlKeHHH
CTeplKHlI, a TaKlKe pacnpeJ\eneHHe nonepe'lHbIX MHHHbIX BonH.


